In Engineering and Technology formula plays main role, because without formulas no feature studies possible in science and technology. Formula is a compressed way of expressing information in symbols, as in a mathematical formula or a science formula. In this article some IMP Formula are listed below.
Table of Contents
ToggleLaws of Indices
Multiplication
- am x an = amxn
- (a x b)n=an x bn
Division
- am / an=am-n
- (a / b)n = an / b
Other
- (a x m)n = amxn
- 1 / an = a-n
- a0 = 1
Factorization and Expansion
This list of formulas are use when we want to factorized some variable or to expand variables.
- a2 – b2 = (a + b) (a – b)
- a2 + b2 = (a + b)2 – 2ab
- a3 – b3 = (a – b) (a2 + ab + b2)
- a3 + b3 = (a + b) (a2 – ab + b2)
- a4 – b4 = (a2 – b2 ) ( a2 + b2 )
- (a + b)2 = a2 + 2ab + b2
- (a − b)2 = a2 − 2ab + b2
- (a + b)3 =a3 + b3 + 3ab(a + b)
- (a – b)3 = a3 – b3 – 3ab(a – b)
- (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4
- (a − b)4 = a4 − 4a3b + 6a2b2 − 4ab3 + b4
- (a + b + c)2 = a2 + b2 +c2 + 2ab + 2ac + 2bc
Trigonometry IMP Formula
Basic Trigonometric Function Formula
By using a right-angled triangle as a reference, we can find all trigonometry term values.
- sin θ = Opposite Side/Hypotenuse
- cos θ = Adjacent Side/Hypotenuse
- tan θ = Opposite Side/Adjacent Side
- cot θ = Adjacent Side/Opposite Side
- sec θ = Hypotenuse/Adjacent Side
- cosec θ = Hypotenuse/Opposite Side
Reciprocal Identities
- cosec θ = 1/sin θ
- sec θ = 1/cos θ
- cot θ = 1/tan θ
- sin θ = 1/cosec θ
- cos θ = 1/sec θ
- tan θ = 1/cot θ
Trigonometry Table
Angles (In Degrees) | 0° | 30° | 45° | 60° | 90° | 180° | 270° | 360° |
Angles (In Radians) | 0° | π/6 | π/4 | π/3 | π/2 | π | 3π/2 | 2π |
sin | 0 | 1/2 | 1/√2 | √3/2 | 1 | 0 | -1 | 0 |
cos | 1 | √3/2 | 1/√2 | 1/2 | 0 | -1 | 0 | 1 |
tan | 0 | 1/√3 | 1 | √3 | ∞ | 0 | ∞ | 0 |
cot | ∞ | √3 | 1 | 1/√3 | 0 | ∞ | 0 | ∞ |
csc | ∞ | 2 | √2 | 2/√3 | 1 | ∞ | -1 | ∞ |
sec | 1 | 2/√3 | √2 | 2 | ∞ | -1 | ∞ | 1 |
Periodicity Identities (in Radians) formulas
These IMP formula are used to shift the angles by θ
sin (π/2 – A) = cos A & cos (π/2 – A) = sin A
sin (π/2 + A) = cos A & cos (π/2 + A) = – sin A
sin (3π/2 – A) = – cos A & cos (3π/2 – A) = – sin A
sin (3π/2 + A) = – cos A & cos (3π/2 + A) = sin A
sin (π – A) = sin A & cos (π – A) = – cos A
sin (π + A) = – sin A & cos (π + A) = – cos A
sin (2π – A) = – sin A & cos (2π – A) = cos A
sin (2π + A) = sin A & cos (2π + A) = cos A
Co-function Identities (in Degrees) formulas
- sin (90°−x) = cos x
- cos (90°−x) = sin x
- tan (90°−x) = cot x
- cot (90°−x) = tan x
- sec (90°−x) = csc x
- csc (90°−x) = sec x
Sum & Difference Identities
- sin (x+y) = sin(x) cos(y) + cos(x) sin(y)
- cos (x+y) = cos(x) cos(y) – sin(x) sin(y)
- tan (x+y) = (tan x + tan y) / (1−tan x •tan y)
- sin (x–y) = sin(x) cos(y) – cos(x) sin(y)
- cos (x–y) = cos(x) cos(y) + sin(x) sin(y)
- tan (x−y) = (tan x–tan y) / (1+tan x • tan y)
Double Angle Identities
sin (2x) = 2sin(x) • cos(x) = [2tan x/(1+tan2 x)]
cos (2x) = cos2(x)– sin2(x) = [(1-tan2 x)/(1+tan2 x)]
cos (2x) = 2cos2(x) − 1 = 1–2sin2(x)
tan (2x) = [2tan(x)] / [1−tan2(x)]
sec (2x) = sec2 x / (2-sec2 x)
csc (2x) = (sec x. csc x)/2
Triple Angle Identities
- sin 3x = 3sin x – 4sin3x
- cos 3x = 4cos3x-3cos x
- tan 3x = [3tanx-tan3x] / [1-3tan2x]
IMP Formula PDF
Below list of IMP Formula can Download in PDF form
- Law of Indices
- Logic of Power and Roots
- Law of Logarithams
- Factorization
- Expansion
- Trigonometry
- Trigonometry Factorization
- Trigonometry Identities
- De-Factorization
- Addition Formulae
- Trigonometry Ratio of Negative angle
- Double angle Formula
- Triple angle Formula
- Derivatives
- Integration
Basic Formulas
Integration
Derivatives
Video lectures of Applied mathematics for Diploma Engineering Students are available on ours Official YouTube Channel Open Mind Guruji.