### **Definition:**

An equation that contain one or more derivatives or differentials is called the differential equation.

- > Order: The order of highest derivatives present in the equation determines the order of differential equation.
- > Degree: The maximum power of highest derivatives determine the degree of the differential equation.

Note: First equation has been cleared from fractional and radical signs in the dependent variables and its derivatives.

Ex:

$$\left(\frac{dy}{dx}\right)^2 + 6\left(\frac{dy}{dx}\right) + 8y = \sin x$$

 $\left(\frac{d^3y}{d^3y}\right)^2 + \left(\frac{d^2y}{d^3y}\right)^5 + y = e^x$ 

 $\rightarrow$  order 3 and degree 2

 $\rightarrow$  Order 1 and degree 2

- **Exercise No.01:**

Que: find the order and degree of differential equation.

1) 
$$\frac{d^2y}{dx^2} + 3\left(\frac{dy}{dx}\right)^2 - 6y = 0$$
  
2)  $\frac{d^2y}{dx^2} = \left(1 + \left(\frac{dy}{dx}\right)^2\right)^3$   
3)  $\sqrt{\frac{d^3y}{dx^3} + \frac{dy}{dx}} = y$   
4)  $\sqrt{\frac{dy}{dx}} = \sqrt[3]{\frac{d^2y}{dx^2}}$   
5)  $\sqrt[3]{\frac{dy}{dx} + y} = \sqrt[4]{\frac{d^2y}{dx^2}}$   
6)  $\frac{d^2y}{dx^2} + \sqrt{1 + \frac{dy}{dx}} = 0$   
7)  $\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = 5\frac{d^2y}{dx^2}$   
8)  $\left(\frac{d^3y}{dx^3}\right)^3 + 2\left(\frac{d^2y}{dx^2}\right)^4 + 5\frac{dy}{dx} + 6y = 4$   
9)  $\frac{d^2y}{dx^2} = \left(y + \frac{dy}{dx}\right)^{\frac{3}{2}}$   
11)  $\frac{d^2y}{dx^2} = \sqrt{y - \frac{dy}{dx}}$   
11)  $\frac{d^2y}{dx^2} = \sqrt{y - \frac{dy}{dx}}$   
12)  $\frac{d^2y}{dx^2} = \sqrt{y - \frac{dy}{dx}}$   
13)  $\sqrt[3]{\frac{d^2y}{dx^2} + 4x} = \sqrt{\frac{dy}{dx}} - 1$   
14)  $2\frac{d^2y}{dx^2} + 4x = \sqrt{\frac{dy}{dx}} - 1$   
14)  $2\frac{d^2y}{dx^2} + \sqrt{1 - \left(\frac{dy}{dx}\right)^2} - y = 0$   
15)  $\frac{d^3y}{dx^3} = \left[k + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$   
16)  $y = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$   
18)  $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = my$   
10)  $\frac{d^2y}{dx^2} = \sqrt{y - \frac{dy}{dx}}$ 

"The Complete Guidance for Your Success"

#### SHIVAJI TECHNICAL ACADEMY छ



## Formation of differential equation

### Exercise No.02:



- 1) Form the differential equation if,  $y = ax^2 + b$ .
- 2) Form the differential equation if,  $y = 4(x A)^2$ . Where A is arbitrary constant.
- 3) Find the differential equation from the relation  $y = Ae^{mx}$
- 4) Find the differential equation from the relation  $y^2 = 4ax$
- 5) Form the differential equation if y = cos(x + a).
- 6) Form the differential equation from the equation  $y = Ae^{3x} + Be^{-3x}$  by eliminating the arbitrary constants.
- 7) Form the differential equation if  $x^2 + cy^2 = 4$ .
- 8) Form the differential equation from the equation  $y = Ae^{2x} + Be^{-2x}$  by eliminating the arbitrary constants.
- 9) Form the differential equation of  $y = a \cos 4x + b \sin 4x$
- 10) Form the differential equation of  $y = A \cos 3x + B \sin 3x$
- 11) Form the differential equation of  $y = A \sin x + B \cos x$
- 12) Form the differential equation whose general solution is  $y = A \cos(\log x) + B \sin(\log x)$ , A and B are arbitrary constant

### Methods to solve differential equation

There are five methods such as follows

- 1) Variable Separable Form
- 2) Linear Differential Equation

## Method no. 1. Variable Separable Form

By simple adjustment if it is possible to write all the term containing x along with dx and the term containing y along with dy, then the equation is said to be in variable separable form.

If f(x)dx = g(y)dy

Then the direct integration of such an equation gives the general solution of the equation.

*i.e.*  $\int f(x)dx = \int g(y)dy$  is a general solution.

"The Complete Guidance for Your Success"

## **5 SHIVAJI TECHNICAL ACADEMY**



Exercise No.03:

| Q.1. Solve $e^{y} \frac{dy}{dx} = x^{2}$                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------|
| Q.2. Solve $x  dy - y  dx = 0$                                                                                             |
| Q.3. Solve $x^2 dx = y^2 dy$                                                                                               |
| Q.4. Solve $\sin x \cos y  dy + \sin y \cos x  dx = 0$                                                                     |
| Q.5. Solve $sec^2x \tan y  dx + sec^2y \tan x  dy = 0$                                                                     |
| Q.6. Solve $\frac{dy}{dx} = e^{x-y} + xe^{-y}$                                                                             |
| Q.7. Solve $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$                                                                       |
| Q.8. Solve $\sqrt{1 - y^2} dx - \sqrt{1 - x^2} dy = 0$                                                                     |
| Q.9. Solve $(1 + x^2)dy = \sqrt{y}dx$                                                                                      |
| Q.10. Solve $3e^x \tan y  dx + (1 - e^x) \sec^2 y  dy = 0$                                                                 |
| Q.11. Solve $\frac{dy}{dx} = e^{(x-y)}x^2$                                                                                 |
| Q.12. Solve $\frac{dy}{dx} = \frac{1+x^2}{y}$ omgfreestudy.com                                                             |
| Q.13. Solve $(1 + x^2)dy - (1 + y^2)dx = 0$                                                                                |
| Q.14. Solve $\frac{dy}{dx} = e^{2x+y} + x^2 e^y$                                                                           |
| Q.15. Solve $\frac{dy}{dx} = e^{2x-3y} + 4x^2e^{-3y}$                                                                      |
| Q.16. Solve $x(1 + y^2)dx + y(1 + x^2)dy = 0$                                                                              |
| Q.17. Find the particular solution of D.E. $\frac{dy}{dx} = 6 - 3x$ . Given at $x = 0, y = 0$ .                            |
| Q.18. Find the particular solu. of D.E. $y\sqrt{1-x^2}dy + x\sqrt{1-y^2}dx = 0$ when $x = \frac{3}{4}$ , $y = \frac{4}{5}$ |
|                                                                                                                            |





Colutions on

"The Complete Guidance for Your Success"

## **57 SHIVAJI TECHNICAL ACADEMY**

## Method no. 2. Linear Differential Equation

• If equation in the form of

 $\frac{dy}{dx} + Py = Q$ , where P and Q are constant or function of x only.

Then its solution is

$$y e^{\int P dx} = \int (Q e^{\int P dx}) dx + c$$

 $e^{\int P \, dx}$  is called as integrating factor.

• If equation is in the form of

 $\frac{dx}{dy} + Px = Q$ , where P and Q are constant or function of y only

Then its solution is

$$x e^{\int P \, dy} = \int (Q e^{\int P \, dy}) \, dy + c$$

 $e^{\int P \, dy}$  is called as integrating factor.

## **Exercise No.04:**

Q.1. Solve  $x \frac{dy}{dx} + y = x^2$ Q.2. Solve  $\frac{dy}{dx} + y \cot x = coces x$ Q.3.  $x \frac{dy}{dx} - y = x^2 \cos^2 x$ Q.4. Solve  $(x^2 + 1)\frac{dy}{dx} + 2xy = \frac{1}{x^2+1}$ Q.5. Solve  $(x^2 + 1)\frac{dy}{dx} + 2xy = 2x$ Q.6. Solve  $\cos x \frac{dy}{dx} + 2y \sin x = \sin 2x$ Q.7. Solve  $cos^2 x \frac{dy}{dx} + y = \tan x$ 



Q.8. Solve 
$$(x + 1)\frac{dy}{dx} - y = e^{3x}(1 + x)^2$$
  
Q.9. Solve  $(x + 1)\frac{dy}{dx} - y = e^x(1 + x)^2$   
Q.10. Solve  $\frac{dy}{dx} + y \tan x = \cos^2 x$   
Q.11. Solve  $(1 + x^2)\frac{dy}{dx} + y = e^{\tan^{-1} x}$   
Q.12. Solve  $\frac{dy}{dx} - y = 3e^{-2t}$  if  $y(0) = -1$ 



"The Complete Guidance for Your Success"

#### SHIVAJI TECHNICAL ACADEMY छ

